Search
Call for Live Order Assistance & Technical Support (7:30am-5pm CST)
All Categories
    Menu Close
    RSS

    Blog

    (0) Best Fertilizer Pump Options for Planters

    Whether you plan to use a starter fertilizer or soil biologicals, applying these liquids requires a proper pump. There are many different options available which makes selecting the best option important. Fortunately, most pumps can work in several different applications, the key is identifying a pump that will best handle your liquid, deliver your desired application rate and pressure to fit your system, and provide long-term value.

    The sales crew at Dultmeier has been helping to set up planter fertilizer systems for decades. In this guide, we'll explore the various pump options for planters, delving into the strengths and weaknesses of each. From the high-volume capabilities of centrifugal pumps to the precise metering of piston pumps, and everything in between, we’ll cover all you need to know to find options that will best meet your needs.

    How to Choose a Fertilizer Pump for a Planter

    When using a pump on a planter to apply fertilizer your focus should be on accuracy and reliability. A variety of different pumps can accomplish this, but they achieve this through various means, so that means there are pros and cons to each different type. 

    What to consider when comparing different types of fertilizer pumps:

    • Durability: Pumps are made from different materials with varying degrees of resistance or durability when used in rugged conditions with corrosive & abrasive fertilizers. 
    • Serviceability: Some pump types are easier to rebuild than others. 
    • Flow Rate: There are pumps available to produce varying flow rates, so first determine your required flow rate per minute and identify a pump that will deliver this rate plus some cushion for agitation and increases in speed or application rate. 
    • Priming/Suction: Consider the pump's priming capabilities, especially in situations where it needs to draw fertilizer from a tank set below the pump level. 
    • Precision: Assess how accurately the pump can deliver the specified amount of fertilizer. Precision is crucial for consistent application and to avoid wastage or crop damage.
    • Compatibility: Ensure the pump is compatible with the type of fertilizer being used. This includes checking for chemical compatibility with the fertilizer to prevent corrosion.
    • Drive Type: Pumps can be driven by different means, such as PTO, hydraulic, or electric motors. Consider the available power sources on your equipment and how the drive type fits into your existing setup.
    • Complexity: Some pumps are more complex in design, requiring more expertise to install and maintain. Simpler designs may be more user-friendly but could lack advanced features.
    • Cost: Balance the upfront cost of the pump with long-term operational costs, including maintenance, repairs, etc. A more expensive pump may offer better durability and efficiency, reducing overall costs in the long run.
    • Fit: Ensure the pump fits physically and functionally with your current equipment. This includes mounting options, connections, and space availability on your planter or tractor.

     

    Consider the Overall Fertilizer System

    Pumps are just one part of the entire fertilizer application system. The plumbing, control valves, nozzles, etc. work together with the pump to meter and distribute the liquid. The type of pump you use will affect how the rest of the system needs to be put together. The best pump for you will depend on the specific things you need your system to do.

    Choosing the right pump requires that you know what type of system you desire. You might desire simplicity and ease of operation, or you might need more precision and the ability to vary your rate automatically. These pump features along with the available drive type and your budget will ultimately determine the pump that will work best.

    We go into greater detail on the overall fertilizer system in our guide to planter fertilizer setups, but here are some of the main types of systems and how they differ:

    • 12-volt Pressure Based: a 12-volt pump controlled via a rheostat
    • Ground Drive: pumps driven by planter wheel or ground drive assembly, application rate is maintained automatically as planter speeds up or slows down
    • Automatic Rate Control: The flow rate is automatically controlled with a rate controller, regulating valve, GPS/speed sensor, and flowmeter. Also allows for rate changes from the cab.
    • PWM: automatic rate control with rate controller; pump motor speed is adjusted with a PWM valve or motor instead of using a conventional regulating valve.

     

    Different Fertilizer Pump Types Used on Planters

    Many of the types of pumps used on planters are similar to those used on a sprayer. There are also pumps designed specifically for planters/toolbars such as squeeze pumps and ground-driven piston pumps. You can see more specific details in our guide to sprayer pumps, but the basic types are:

    Let's examine each type of pump used and identify the scenarios they work for applying fertilizer on a planter.

     

    Centrifugal Pumps

    The same type of hydraulic-driven centrifugal pumps used on sprayers can be used as a fertilizer pump on a planter. Centrifugal pumps are available that can provide flow rates well over 200 gallons per minute. If you have hydraulic outlets available, then they are a great option, especially for higher volume rates and larger planters. 

    For example, if you have a 24-row planter and want to apply a rate of 50 gallons per acre at 5 mph, you need more than 20 gallons per minute from your pump. So, at a minimum, you want a pump that can deliver this flow rate. To be safe you would want a pump that can deliver more than this to account for increases in speed, rate, and agitation. 

    Now, when these pumps are used on a sprayer, they are generally handling a liquid that is mostly water. On a planter, you are likely dealing with 100% fertilizer or a diluted solution of fertilizer, water, etc. 

    To handle the abrasive and corrosive nature of fertilizers, stainless steel pumps are recommended. Cast iron and poly will work, but they typically do not last as long. While stainless is usually the best option, it does depend upon the specific type of fertilizer or liquid being used. Many centrifugal pump manufacturers, like Ace and Hypro, offer a severe-duty mechanical shaft seal that is made to hold up better to abrasive material. Standard seals will work, but again, they may not last as long. 

    It is always vital with a standard centrifugal pump that you don’t run it dry. This will knock out the seal quickly. However, there are “wet seal” centrifugal pumps that are protected from running dry. These pumps have a reservoir with a coolant/anti-freeze to lubricate the pump so if the pump is starved of fluid, the seal is still lubricated.  

    Pros of Using Centrifugal Pumps for Planter Fertilizer Application:

    • High volume
    • Easy to maintain and rebuild
    • Good for 2x2
    • Long service life, especially stainless steel

    Cons of using a centrifugal pump on a planter:

    • Hydraulic outlets needed
    • Cannot run dry (unless wet seal pump)
    • Straight centrifugal pumps are not self-priming and are limited in where they can be installed. 

    System Requirements When Using a Centrifugal Pump:

    Centrifugal pumps need a mechanism to control the flow. Typically, this requires a flow meter, regulating valve or PWM hydraulic motor, along with GPS or speed sensor, and a rate controller. Centrifugal pump setups are relatively more expensive than some other setups. 

    For more information on the overall fertilizer setup including controls, monitoring, and metering, refer to our full guide to planter fertilizer systems

    Centrifugal Pumps Options for Planters:

     

    12-Volt Diaphragm Pumps

    One of the most cost-effective ways to get a starter fertilizer applied is with a 12-volt diaphragm pump. They are especially convenient for someone wanting to add a simple setup to a planter that can be installed easily. 12-volt diaphragm pumps do have some limits. They have a maximum effective flow of about 3-6 GPM. This means they are suited for application rates of up to about 10 GPA for smaller planters (6-12 rows) and about 5 GPA for larger planters (24 row+). 

    12-volt pumps are small and lower cost than other types of pumps. They can be easily installed about anywhere you can supply 12-volt power. It is also easy to adjust the pump output using a rheostat motor controller. This simple controller lets you increase or decrease the pump output from the cab as you speed up or slow down. 

    Advantages of 12-Volt Diaphragm Pumps:

    • Low cost relative to other pump types
    • Simple and easy to install

    Disadvantages of Diaphragm Pumps for Fertilizer:

    • Lower flow compared to other pump types
    • Typically do not last as long as other pump types

    System Requirements for 12-Volt Diaphragm Pumps:

    A complete setup requires a pump speed controller, flow monitors, and orifice discs to regulate the output of the pump and apply the correct amount of liquid. This is one of the simplest and lowest-cost ways to apply a starter fertilizer in-furrow.

    Dultmeier offers 12-volt pump kits that include the pump, monitors, speed controller, and plumbing components to install on your planter. Be sure to check this page for a complete list of the kit components. Don’t worry we can make any changes to the kit if you need it!

     

    Hydraulic Driven Diaphragm Pumps

    12-volt electric is not the only type of diaphragm pump that can be used to apply fertilizer. A larger, high-pressure diaphragm pump is another option that delivers more flow and much higher pressures than the small 12-volt motor versions.

    IMAGE of PUMP ON SADDLE TANKS

    These pumps have excellent suction lift, meaning more flexibility where they are installed vs centrifugal pumps that need to be flooded. These pumps can handle thick and viscous fertilizers with high solid content. The gearbox is lubricated with oil. There is virtually no concern if you run the pump dry.

    This type of diaphragm pump can be driven via a number of different means. Ground drive, engine, etc. The most common option on planters is a hydraulic motor. This may be a conventional hydraulic motor or PWM controlled motor.

    Advantages of Diaphragm Pumps:

    • High volume potential
    • Higher pressure capability compared to other pump types
    • Self-priming
    • Can run dry
    • Ability to handle viscous products

    Disadvantages of Diaphragm Pumps for Fertilizer:

    • Lower flow compared to centrifugal pumps
    • Requires pressure relief valve
    • Routine maintenance required

    Diaphragm Pump System Requirements:

    A diaphragm pump setup will require a rate controller with a flow meter and a regulating valve to control the amount of fertilizer you apply. Diaphragm pumps with PWM hydraulic motors are also available. With PWM you still need the controller and flow meter but instead of using a regulating valve to control flow, the PWM controls the speed of the pump. 

     

    Piston Pumps

    Piston pumps are another type of positive displacement pump used in several different industries. As you might have guessed, a piston pump gets its name from the mechanical means used to move the fluid. In this case, a reciprocating piston forces draws liquid in and forces it out of the pump chamber. 

    There are specific piston pumps designed for the agriculture world. The NGP series piston pump from John Blue is an extremely effective tool for liquid fertilizer application on planters, side dress machines, and other toolbars. They offer a very accurate way to apply fertilizers at a constant rate. These pumps can be driven in several ways, but the most common drive types when used on planters are ground drive and hydraulic drive. 

    Advantages of Piston Pumps for Fertilizers:

    • Priming Capability - these pumps can prime or pull liquid from longer distances when compared to other pump types.
    • Extremely accurate despite varying temperatures
    • Auto-adjusting for speed changes (maintains application rate)
    • Constructed of durable cast iron and stainless components. Properly maintained pumps can last many years.
    • Field Serviceable

    John Blue Piston Pump Service & Repair Video:

    Disadvantages:

    • Gritty products can damage pistons
    • Lower flow compared to centrifugal pumps

    Piston Pump System Requirements

    As mentioned earlier, there are two main ways to drive a piston pump: ground drive or hydraulic. 

    Ground drive either with a dedicated ground drive assembly or planter hex shaft. Ground drive pumps offer extremely accurate performance and do not require all the electronic components like flow meters, regulating valves, or rate controllers. 

    Ground-driven pumps do require that you calculate the proper pump setting and select sprockets to ensure the crankcase of the pump is rotating at the speed needed to deliver your desired rate. John Blue provides a tool that lets you quickly determine the correct settings with their NGP piston pump setting calculator.

    From there you simply need to ensure that you evenly distribute the liquid among each row. This will require a flow divider manifold or orifice discs as well as a set of site gauges to monitor the flow going to each row. 

     


    John Blue Ground Drive Piston Pump options:

    Ground Drives:

    NGP Piston Pumps with Hydraulic Motor

    If you prefer, you can drive an NGP piston pump with a hydraulic motor. The motors have a PWM valve that allows you to control your rate by varying the speed of the motor. While this method does not require a regulating valve, you will need a GPS/speed sensor and a flow meter in addition to a rate controller. 

     

    Squeeze Pumps

    A squeeze pump is unique in that it is designed specifically for planters. They are effective at accurately and evenly distributing fluid over each row. They do not require any additional components such as rate controllers, regulating valves, distributors, etc. Just typical plumbing and sight gauges if desired. 

    Advantages of Squeeze Pumps

    • Simplicity
    • Maintains rate when you speed up or slow down
    • Pump stops when the planter stops

    Disadvantages of Squeeze Pumps

    • Not as versatile as other pump types
    • Limited pump options available (6 row, 8 row, 12 row, 16 row)

    System Requirements for Squeeze Pumps

    A fertilizer setup using a squeeze pump is very simple. The pump is ground-driven, so the output is directly related to the speed of the planter. This means you dial in the output you need, and your desired application rate is maintained. There is no need for regulating valves or electronic flow meters. 

    The pump also serves as the manifold that evenly distributes the liquid over each row. The only additional components you need would be flow monitors so you can watch each row for plugs or low flow. 

     

    Conclusion

    In conclusion, selecting the best fertilizer pump for your planter system requires careful consideration of several factors, including the type of fertilizer, flow rate needs, precision, and compatibility with your setup. Each pump type—from centrifugal and diaphragm to piston and squeeze pumps—offers unique strengths and trade-offs. Whether you prioritize high volume, precision desired, or simplicity, there’s a pump to meet your specific requirements.

    At Dultmeier, we understand that no two planter setups are exactly the same, and our team has decades of experience helping customers choose the right pumps for their systems. Whether you need a robust hydraulic-driven pump for high-volume applications or a simple 12-volt diaphragm pump for a smaller planter, we’re here to guide you through the selection process. Don’t hesitate to reach out for personalized recommendations or browse our selection of pumps and complete fertilizer systems to get started!

    (0) Sprayer Pump Breakdown: Understanding the Mechanics & Benefits of Each Type

    A sprayer's job is to distribute fluid over a designated area. No matter what type of sprayer at the center of the system is a pump. There are nearly endless different types of sprayers. They are built for several applications and require different types of pumps to deliver the flow characteristics necessary to complete those different spraying tasks. 

    At Dultmeier Sales, pumps are not just the center of a sprayer, they are at the center of our business. We sell, service, and support a wide variety of pumps for all types of sprayers. In addition, we prioritize understanding the different types, how they operate, and what pump works best on different sprayers. 

    In this guide, we will look at all the different types of pumps used on sprayers. We will examine how each pump operates and how they compare in terms of flow rate and pressure. In addition, we will offer real examples so you can see exactly how each pump is used. You’ll be able to understand what type of sprayer pump will work for your application.

    Different Types of Sprayer Pumps

    While there are several variations of each type, the different pumps used on sprayers are centrifugal, roller, diaphragm, and piston pumps. Each pump is unique in its design and performance. Let's explore each type to understand how they operate and when to use them.

    Centrifugal Pumps

    • Pump Family: Centrifugal 
    • GPM Range: 0 to 500+ 
    • PSI Range: 0 to 150

    Centrifugal pumps use an impeller to move water or other fluids by using centrifugal force. They are known for their ability to move high volumes of liquid at relatively low pressure. The most common centrifugal pump type used on a sprayer is a straight centrifugal pump. Self-priming pumps can be used, but a straight centrifugal pump is typically more efficient and capable of developing higher operating pressure.

    A self-priming pump is capped at about 40-60 PSI depending on the specific pump. The straight centrifugal pumps designed for use on sprayers can produce well over 100 PSI. They are intended to accommodate the high travel speeds of self-propelled sprayers combined with the expanded operating ranges of modern sprayer nozzles. 

    Common Centrifugal Sprayer Pump Applications

    • Agricultural Spraying: Boom sprayers, fertilizer toolbars, boomless sprayers, fertilizer delivery on planters.
    • Turf and Landscape: Golf course sprayers, sports field sprayers, large acreage sprayers.
    • Industrial Uses: Salt brine trucks and trailers, water trucks for dust control.

    Advantages of Centrifugal Sprayer Pumps

    • High Volume Output: Centrifugal pumps can handle large volumes of liquid, making them suitable for applications requiring substantial flow rates.
    • Durability: These pumps are robust and can handle abrasive and corrosive chemicals, making them versatile for various spraying tasks.
    • Simplicity: The design is straightforward, which makes maintenance and troubleshooting easier compared to more complex pump types.
    • Cost-Effective: Generally, centrifugal pumps are less expensive to manufacture and maintain, providing a cost-effective solution for many users.

    Disadvantages of Centrifugal Sprayer Pumps

    • Low pressure: Centrifugal sprayer pumps have lower pressure capabilities compared to some other types of pumps like piston or diaphragm pumps. While centrifugal pumps can move high volumes of liquid, they do so at relatively low pressures. 
    • Cannot Run Dry*: Running a centrifugal pump without fluid can cause significant damage to the pump. A centrifugal pump requires fluid in the pump case to lubricate the seal. *There are lubricated seals or “wet” seal centrifugal pumps that can run dry. 

    Centrifugal Pump Drive Types

    Parts of a Centrifugal Sprayer Pump

    • Impeller: The heart of the pump, which is responsible for imparting kinetic energy to the liquid. The design and size of the impeller significantly affect the pump’s performance.
    • Casing: Encases the impeller and directs the flow of liquid. It also helps convert kinetic energy into pressure energy.
    • Seal: Prevents leaks and maintains the pump's integrity by keeping the liquid within the system.
    • Suction and Discharge Ports: Inlet and outlet points through which the liquid enters and exits the pump.

    You can find a more detailed examination of centrifugal pump components and how they affect the performance of a pump in this guide to centrifugal pumps for fertilizer.

    View All Centrifugal Pump Options

     

    Roller Pumps

    • Pump Family: Positive Displacement 
    • GPM Range: 2 to 60 
    • PSI Range: Up to 300 
    • Applications: Small and medium-sized boom sprayers, turf sprayers

    Roller pumps use rollers inside a cylindrical housing to move liquid. As the rollers rotate, they create a vacuum that draws liquid in and then pushes it out. Roller pumps are very common on 3-point sprayers crop and turf boom sprayers, because they are self-priming, develop consistent pressure, and are less expensive compared to other types of sprayer pumps. 

    A roller pump is part of the positive displacement pump family. This means that a consistent volume of fluid is delivered with each cycle (in this case shaft revolution), regardless of the discharge head in the system. Simply put, you can spray at 60 psi if you want because the pump overcomes the restriction in the system. With a centrifugal pump, the system restriction will affect your operating pressure much more. 

    The larger roller pumps can produce about 50-60 GPM, limiting the size of the sprayer they can be used on. A roller pump can be repaired but the standard cast iron housings do have a limited life span. Friction eventually wears the pump housing to a point where the pump will no longer work efficiently. 

    To combat the wear and corrosion of agrochemicals and fertilizers, there are Ni-resist and Silvercast pump housings that last much longer than the standard cast iron roller pumps. 

    Advantages

    • Pressure Output: Capable of producing consistent and generally higher pressure than a centrifugal pump. 
    • Self-Priming: Can draw liquid from a lower level, making them easy to start and use.
    • Compact Design: Small and easy to integrate into different spraying systems.
    • Can Be Reversed: Many roller pump models can be reversed so you can drive it either clockwise or counterclockwise. Consult the manual of your specific pump for details.
    • Cost: Less expensive compared to other sprayer pump types. Especially when PTO driven since it does not require an engine or hydraulic motor.

    Disadvantages

    • Wear and Tear: Rollers wear out, especially when used with abrasive chemicals.
    • Limited Flow Rate: Not suitable for applications requiring high flow rates.
    • Maintenance: Regular maintenance is required to ensure optimal performance.
    • Limited Lifespan: Wear and corrosion can increase the Internal clearance between the pump housing and rollers to the point that the pump no longer works effectively.

    Drive Types

    • PTO
    • Belt Driven
    • Electric Motor
    • Gas-Engine

    Parts of a Roller Pump

    • Rollers: The moving parts inside the pump that create suction and discharge action.
    • Rotor: Holds the rollers in place and drives their motion.
    • Housing: Encases the rollers and rotor, providing a sealed environment for the liquid to move through.
    • Shaft: Driven by PTO or motor and spins the rotor.
    • Seals: Prevents leaks and maintains the integrity of the pump system.

    Check out the Different Roller Pump Options

     

    12-Volt Diaphragm Pumps

    • Pump Type: Positive Displacement 
    • GPM Range: 1 to 5 
    • PSI Range: Up to 100+
    • Applications: ATV/UTV sprayers, spot sprayers, small boom sprayers, low-volume chemical transfer

    12-volt diaphragm pumps are very common and versatile. They are used on small sprayers because they are easy to power with a battery and relatively low in cost. These pumps work well with a wide variety of agrochemicals, cleaners, and other liquids, especially when diluted. They are self-priming, and they can run dry.

    One standout benefit of the 12-volt sprayer pump is the demand switch. This feature shuts the motor off when you close a valve on the discharge side of the pump. When the valve is closed, the pressure increases, tripping the demand switch and shutting off the motor. 

    The most common application of this is when you are spot-spraying with a trigger wand or spray gun. When you pull the trigger, your pump turns on, when you release the trigger, the pump stops. This conserves your battery life and prolongs the life of the pump as it only runs when needed. 

    A 12-volt diaphragm pump can be used on smaller boom sprayers. However, they may only be able to work on booms with about 5-10 tips depending on the size of the nozzles that you use.

    Advantages

    • Portability: Lightweight and easy to transport, ideal for portable sprayer setups.
    • Self-Priming: Can draw liquid from a lower level, making them easy to start and use.
    • Low Power Consumption: Efficient operation with low electrical power requirements.
    • Chemical Resistance: Can handle a variety of chemicals without damage.
    • Demand Switch: The pump only runs “on demand”, when you pull the trigger or open the valve to spray.
    • Low-Cost: Very affordable compared to other pump types.

    Disadvantages

    • Limited Flow Rate: Maximum flow rates are about 5 GPM. 
    • Pressure Limitations: Maximum pressure is lower compared to other positive displacement pumps.
    • Pump Life: The pump motor and other components do not have the same lifespan as other pump types. Parts can be replaced but the cost and time to repair may be nearly as much as a new pump.

    Drive Types

    • 12-volt Electric Motor
    • This pump type is also available with 24-volt and 115-volt motors 

    Parts of a 12V Diaphragm Sprayer Pump

    • Diaphragm/Wobble Plate: This assembly is driven by the motor; it has an eccentric bearing that causes it to “wobble” and this motion creates the suction to pull liquid into the pump and force it out.
    • Check Valves: let fluid flow into the pump and stop it from going back out of the inlet port.
    • Pump Housing: Contains the wobble plate and check valve assembly, and serves as the pump chamber where the liquid is pulled into the pump and forced out.
    • Motor: Powers the movement of the wobble plate.

    View 12-Volt Pump Options

     

    Large Diaphragm Pumps

    • Pump Type: Positive Displacement
    • GPM Range: 3-100+
    • PSI Range: Up to 725
    • Applications: Tree spraying, turf sprayers, fertilizer applicators

    Large diaphragm pumps use multiple diaphragms and chambers to move large volumes of liquid at high pressures. These pumps are the preferred tool for long-range or vertical spraying such as tree spraying. The combination of high-flow rate and high pressures, when combined with the right sprayer gun and nozzle, results in a stream of liquid that can be propelled 50 feet or more in the air. 

    Video of Diaphragm Pump on Skid Sprayer:

    Diaphragm pumps can also be used on boom sprayers or fertilizer boom sprayers. While they don’t offer the same flow rates as a centrifugal pump of similar size, they can be a good option for sprayers or applicators when the fluid being sprayed is too thick or viscous for a centrifugal pump.

    Advantages

    • High-Pressure Output: Capable of producing very high pressures
    • Durability: The flexibility of the diaphragm offers good resistance to a wide range of abrasive and viscous fluids.
    • Chemical Resistance: Can handle a variety of chemicals without damage.

    Disadvantages

    • Cost: More expensive to purchase and maintain compared to smaller pumps.
    • Complexity: More complex design requires more safeguards and proper installation. Troubleshooting can be more complicated than with other pump types. 
    • Maintenance: The diaphragms and pump oil must be changed periodically, typically every 500 hours or 3 months of use. 

    Drive Types

    • Engine Driven
    • Hydraulic Driven

    Parts of a Diaphragm Sprayer Pump

    • Diaphragms: Multiple flexible membranes that move to create suction and discharge action.
    • Check Valves: Control the flow of liquid into and out of the pump chambers.
    • Pistons: Push and pull the diaphragms to create the necessary suction and discharge, driven by the crankshaft.
    • Crankshaft: Driven by the engine or motor, rotation of the crankshaft drives the pistons
    • Gear Box: Allows diaphragm pumps to be directly driven by a gas engine at about 3600 rpm. 
    • Regulator/Control: Serves as the relief valve and provides pressure adjustment. Also directs flow from the pump outlet to different sprayer features such as spray gun, agitation, etc.

    View All Diaphragm Pump Options

     

    Piston Pumps

    • Pump Type: Positive Displacement
    • GPM Range: Approx 1 to 68 
    • PSI Range: Up to 120
    • Applications: Fertilizer application on toolbars or planters.

    A piston pump is more common for fertilizer application than it is for pesticide/herbicide application. They do not offer the flow rates needed for large boom sprayers, and they are not as forgiving to solids or abrasion as diaphragm pumps. However, they excel at delivering fluid accurately and consistently.

    This pump works by using pistons to create a reciprocating motion that draws liquid into the pump chamber on the suction stroke and then pushes it out on the discharge stroke. This mechanism allows the pump to generate consistent flow.

    There are piston pumps that are designed for high pressures (1000 psi +), but the piston pumps used for agricultural applications are geared to precision. They are often ground-driven, which makes them the simplest option for automatic rate control. A ground-driven piston pump does not require flow meters or regulating valves for automatic rate control. As you speed up or slow down the pump delivers the precise amount needed to maintain your application rate.

    These pumps are also available with hydraulic motors and PWM valves. This allows you to control the speed of the pump with a rate controller and flow meter. 

    Advantages

    • Accuracy: The pump pushes a consistent amount of fluid with each stroke, especially important when applying fertilizers.
    • Durability: Robust construction for long-lasting performance in harsh environments.
    • Priming: Excellent ability to prime offers flexibility when mounting the pump on a sprayer, toolbar, or planter.
    • Easy to Service: The NGP piston pumps are designed to be field repaired. The check valves can be quickly removed and cleaned or replaced as needed.
    • Self-Adjusting: A ground-driven piston pump automatically adjusts to your speed, delivering the precise amount needed without flow meters or regulating valves.

    Disadvantages

    • Cost: More expensive than other pump types that deliver similar flow rates
    • Complexity: More complex pumps with many components.
    • No solids: Requires filter prior to the inlet to protect check valves and pistons from damage.

    Drive Types

    Parts of a Piston Sprayer Pump

    The piston pumps used for fertilizer application are more complex pumps than some of the other fertilizer pumps. They feature several components but these are the main ones:

    • Plunger: Reciprocating action of piston rod and plunger draws in liquid and pushes it out.
    • Check Valves: Control the flow of liquid into and out of the cylinders.
    • Crankcase: Houses connecting rod and crankshaft

    See all the Piston Pump Drive Options Here

     

    Key Takeaways

    The type of pump used on a sprayer can have a drastic effect on the performance. Understanding the different types of sprayer pumps and their attributes will ensure you have the best tool for your application. The Dultmeier Sales team has decades of experience and can provide you with insights and guidance in selecting and troubleshooting your sprayer pump. 

    (0) High Volume Transfer: Discovering the Pump Types with the Highest Flow Rates

    Choosing the right pump can make all the difference in how smoothly your system runs, whether moving fertilizer, de-icing fluid, or pumping out a pit. One of the big questions people often ask is: which type of pump gives you the highest flow rate? 

    The type of pump designed to produce the highest flow rate is a centrifugal pump. These pumps are intended to handle large volumes of liquid at relatively low pressures. They work by converting rotational kinetic energy, often from a motor, into energy in a moving fluid, which creates a flow rate that can be very high.

    If you're looking to move a lot of liquid quickly, the centrifugal pump is usually your best bet. Let’s take a closer look at why these pumps are so good at handling large volumes with ease.

     

    Why Centrifugal Pumps Excel in High-Flow Rate Applications

    Centrifugal pumps are engineered to move as much liquid as possible in an efficient manner, making them the go-to choice when high flow rates are needed. Other pump types are designed to handle thicker liquids or to generate higher pressures, but a centrifugal pump’s primary purpose is to transfer fluids that are relatively less viscous. Think water, fuels, fertilizers, and other flowable liquids. 

    How Centrifugal Pumps Work

    Centrifugal pumps function by converting rotational energy into fluid flow, making them exceptionally efficient for high-volume transfer. You can read more on the specifics in our centrifugal pump guide. The short explanation is the heart of a centrifugal pump is the impeller.  As the impeller spins, it imparts velocity to the fluid, pushing it outward from the center where the fluid enters, to the edges where it exits. This process creates a continuous, smooth flow of liquid.

    High Speed Equals High Flow

    The faster the impeller spins, the more kinetic energy is transferred to the fluid, resulting in a higher flow rate. This ability to maintain a steady, high-speed transfer of liquid makes centrifugal pumps ideal for applications that demand high flow rates.

    Continuous Flow for High Efficiency

    Unlike positive displacement pumps—such as gear pumps or piston pumps—that move liquid in cycles, centrifugal pumps deliver a continuous, non-pulsating flow. This is a significant advantage in applications where moving large volumes of liquid is essential, as it reduces turbulence and inefficiencies that can arise from intermittent flow. Because centrifugal pumps don’t need to pause between cycles, they’re more efficient for handling large volumes.

    Scalability 

    One of the key benefits of centrifugal pumps is their scalability. These pumps can easily be adjusted to handle higher flow rates by increasing the impeller size or the speed at which the pump operates. This scalability is more straightforward compared to other types of pumps, where increasing the flow rate might involve more complex changes.

    High Flow at Lower Pressure

    Centrifugal pumps shine in applications where high flow rates are needed at relatively low pressures. While they might not be the best choice for high-pressure needs, their design is optimized to move large amounts of liquid with minimal energy input.

     

    Flow Rate Capabilities of Centrifugal Pumps

    The flow rate of a centrifugal pump can vary widely depending on the size of the pump, the speed of the impeller, and the specific design of the system. These pumps can achieve flow rates ranging from a few gallons per minute (GPM) to several thousand GPM. For instance, centrifugal pumps used in large-scale agriculture can easily move hundreds of gallons in a minute 

    Common High-Flow Centrifugal Pump Applications

    Railcar Unloading

    Centrifugal pumps are ideal for transferring liquid fertilizer from railcars to storage tanks. In many scenarios flow rates of over 1000 gallons per minute are possible.

    Dewatering

    Centrifugal and submersible (a type of centrifugal pump) are ideal for moving water from construction sites, drainage pits, or any location where excess water accumulation could interfere with operations.

    Industrial Cooling

    In cooling towers, the volume of water that needs to be circulated is immense. Centrifugal pumps are ideal for this purpose due to their ability to handle high flow rates. These pumps ensure a continuous and reliable flow of water through the cooling tower.

    Industrial and Manufacturing Processes

    Centrifugal pumps are essential for the precise and reliable transfer of raw materials, intermediates, and finished products. Additionally, when precise flow control is needed, these pumps can be paired with variable frequency drives (VFDs) to adjust the flow rate accurately.

    Dultmeier engineers have several combined years of experience sizing pumps according to the specific needs of several high-volume applications. Be sure to contact us if you have any questions.

     

    Factors Affecting Flow Rate

    Several factors affect the flow rate of a centrifugal pump, including:

    1. Pump Size: Larger pumps with bigger impellers can move more liquid per rotation, increasing the overall flow rate.
    2. Impeller Design: The shape and size of the impeller blades, along with the speed at which the impeller rotates, play a crucial role in determining the pump's efficiency and flow rate.
    3. System Head: The height and resistance the liquid must overcome (referred to as 'head') can impact the pump's performance. Centrifugal pumps are more efficient at lower heads, making them ideal for applications requiring high flow but not high pressure.

    If you would like a more detailed explanation of system head and flow rates, be sure to read our guide on centrifugal pumps written by in-house engineer Tom Hansen. 

     

    Selecting the Right High-Flow Pump for Specific Applications

    Although a centrifugal pump is the best pump type for high-volume transfer of several fluids, in some scenarios a centrifugal pump may not be the best option. Thicker fluids may require a gear or diaphragm pump. Applications that require high-flow and higher pressures such as hydro excavating or sewer jetting, will need a different type of pump. 

    Here are some common applications where a centrifugal pump may not be the best option and which pump types can offer the highest flow rate in each scenario:

    Tree Spraying: While a centrifugal pump offers enough volume, spraying tall trees requires more pressure than they can deliver. This is where high-flow diaphragm pumps come into play. They can deliver flow rates ranging from a few gallons per minute to over 100 while producing pressures from 250 psi and more. 

    Liquid Feed Transfer: The combined viscosities and occasional cold temperatures of many liquid applications require a gear pump for high-volume transfer. Centrifugal pumps work in some scenarios but are limited when handling thicker, more viscous liquids like molasses. 

    Learn more in our guide on how a gear pump works.

    NH3: Vane pumps are used for high-volume transfer of anhydrous ammonia. Centrifugal pumps can struggle with the low viscosity and high vapor pressure of NH3, leading to issues like cavitation, reduced efficiency, and potential pump damage.

    High-Pressure: Applications requiring higher pressures (think 1000 PSI+), and large volumes of fluid typically require plunger pumps or piston pumps. Pumps producing high-pressure and high flow rates do have significant horsepower requirements. 

    12-Volt Power: 12-volt motor pumps are available for applications where only 12-volt power is available. The flow rates that can be achieved by these pumps are limited to a maximum of about 20-25 gallons per minute. This is only achieved at very low pressures, about 5 PSI. There are 12-volt pumps that produce 1-5 GPM at much higher pressures, typically 40-60 PSI, making them much more versatile for low-volume applications. 

     

    Final Thought

    Centrifugal pumps are the top choice for high-flow applications, efficiently moving large volumes of low-viscosity fluids at lower pressures. Their scalability and continuous, smooth flow make them ideal for industries requiring reliable, high-volume liquid transfer.

    If you need help selecting and sizing a centrifugal pump you can reach out to our team. Our engineering department can provide flow analysis and expert guidance!

    Trash Pumps: Can I Use One to Pump Fertilizer?

    Resourceful folks are always looking for ways to get the most out of their equipment. One way to do this is to repurpose tools whenever possible. One such tool is the trash pump. If you already have one and need to move fertilizer, it only makes sense to wonder, "Can I use my trash pump for fertilizer?".

    The short answer is yes, in many cases, a trash pump can handle fertilizer. However, this is not always the case. Several factors affect a pump's ability to handle fertilizer, including the type of fertilizer, pump materials, horsepower, and more—all of which might impact the overall effectiveness and longevity of your trash pump.

    Do not worry. In this article, we will explore not only whether repurposing a trash pump for fertilizer is a feasible option but also which situations make the most sense. We’ll cover the basics of trash pumps, the properties of fertilizers, and how to know if your specific pump can handle the job.

     

    What is a Trash Pump?

    A trash pump is a type of centrifugal pump that is designed to move water that contains large pieces of debris, such as sand, gravel, sticks, etc. Generally, they are self-priming pumps that are constructed out of. Some are made from more durable metals like cast iron or ductile iron, while less expensive models are aluminum or other alloys.

    Compared to other centrifugal pump types they are generally less efficient. This is because they are designed for versatility and not for efficiency. Most centrifugal pumps used for clear or "clean" fluids are more efficient because they have a smaller clearance between the impeller and the volute inside the pump housing.

    Trash pumps have a smaller impeller diameter in relation to the volute size, which allows them to pass rocks or other debris more easily without scoring the internals of the pump. This capability makes them particularly useful in construction, agricultural, and dewatering/drainage scenarios.

     

    Can Trash Pumps Handle Fertilizer?

    Fertilizers come in various forms: liquid, granular, and soluble powder. Each type has different handling and application requirements. Liquid fertilizers are often preferred for their ease of application and rapid absorption by plants. However, they can be corrosive or abrasive, depending on their chemical composition, which can include nitrogen, phosphorus, potassium, and various micronutrients in different chemical forms.

    The concept of using a trash pump for moving liquid fertilizer might seem viable. Trash pumps can handle slurries and fluids with solid particles, which theoretically could include liquid fertilizers. However, there are some things you need to consider, like material compatibility, efficiency, and reliability, before actually using your trash pump to transfer fertilizer.

    Trash Pump Chemical Compatibility

    Many trash pumps are designed to handle water and may not be compatible with the aggressive chemical nature of some fertilizers. Corrosion of the internal components, such as the impeller and the housing, can occur if the materials are not resistant to fertilizer chemicals.

    Materials Typically Not Suited for Common Liquid Fertilizers:

    • Aluminum
    • Brass
    • Polycarbonate
    • PVC

    Materials Recommended for Use with Liquid Fertilizer:

    • Cast Iron
    • Stainless Steel
    • Viton
    • Carbon Steel
    • Polypropylene

    In addition to pitting, rust, and corrosion of the housing and impeller, the pump seal can suffer damage from an aggressive fertilizer. Trash pumps typically have a mechanical shaft seal that keeps liquid from leaking out during operation. This seal consists of two faces and an elastomer that rub together to form a barrier.

    If the seal faces or elastomers are made from a material not compatible with the type of fertilizer you want to pump, the seal will fail. Abrasive fertilizers cause damage to the seal faces and the pump will leak around the shaft. This can happen gradually or quite quickly if the fertilizer and materials are not compatible.

    A fertilizer's with your pump materials might be the most crucial deciding factor for whether you can utilize a trash pump over another type of pump . If you are new to fertilizer transfer pumps, this guide explains in detail the different options for high-volume fertilizer transfer pumps.

    Trash Pump Efficiency

    Let’s say your trash pump is constructed of materials that will stand up relatively well to whatever type of fertilizer you need to pump. Good, you can check off that consideration. However, there is still the matter of efficiency to consider. Trash pumps are by nature less efficient than other centrifugal pumps typically used for fertilizer transfer. You’ll therefore want to ensure that your trash pump will actually perform as you need or you’ll have to start at square one finding another solution.

    As mentioned earlier, trash pumps generally have more clearance inside them to pass solid material. This makes them less efficient. (If you want to fully understand centrifugal pump efficiency, then check our  You may be able to live with this lower efficiency, especially if it means not having to spend the extra money buying another more expensive pump.

    Even so, just because a trash pump may work, doesn’t mean it will move the liquid at the same volume as other pumps designed specifically for the transfer of fertilizers. It’s crucial then, that the prospective costs of that lower efficiency be weighed out for both the short-term and long-term benefits of your operation.

     

    Conclusion: Should You Use a Trash Pump for Fertilizer?

    While trash pumps are a versatile option in a pinch, there are better pumps available for the efficient transfer of fertilizer. Over a season the additional amount of time it takes you to move fertilizer could impact your bottom line. Not to mention trash pump built with metals not suited for your specific fertilizer could fail prematurely, costing you additional time and money than if you had opted for another pumping solution in the first place.

    Dultmeier carries several different pump lines that are well-equipped for fertilizer transfer:

    For more details on which fertilizer pump will work best for you, check out our guide on the best fertilizer pump options

    The Key to Sprayer Nozzle Selection: How to Read Spray Nozzle Charts

    Whether you're dealing with weeds, insects, or applying fertilizer, selecting the right sprayer nozzle plays a crucial role in the effectiveness of your results. Nozzles affect the rate, coverage, drift potential, and other performance characteristics of your spray applications.  But how do you choose the perfect nozzle for your needs? The answer lies in understanding spray nozzle charts. 

    Spray charts provide you with all the details you need to make an informed decision. However, if you are not familiar with them, all the information these charts provide can be hard to sift through. If you want to learn how to use a nozzle chart, stick around because in this guide we will walk through all the information these tools provide and how you can become more confident in reading these charts accurately. 

     

    Understanding the Information Included in a Spray Nozzle Chart 

    A spray nozzle chart is a detailed table that provides comprehensive performance data for a specific sprayer nozzle series. It displays essential information about the nozzle's performance characteristics, such as flow rate, droplet size, and pressure ranges. Understanding how to read a nozzle chart, therefore, is crucial for selecting the appropriate spray nozzle for your specific needs.

     

    TeeJet Spray Nozzle Chart Example:

    The primary purpose of spray nozzle charts is to guide applicators in making an informed decision when choosing a sprayer nozzle. To use the chart effectively, you must understand the information being presented. 

    So, let’s look at the different pieces of data shown in nozzle charts.

     

    Nozzle Capacity (GPM)

    The most essential piece of information that a nozzle chart shows is the flow rate of a single nozzle in gallons per minute (GPM) at different pressures.   It is important to note that regardless of which nozzle type you are looking at, the flow rate/capacity will be the same across all the different nozzle sizes.

    This allows users to select the proper nozzle size according to their application parameters. For help sizing your nozzles, you can refer to our complete guide to properly sizing sprayer tips

     

    Spray Nozzle/Tip Numbers & Colors

    Sprayer nozzles used for agricultural and turf spraying are color-coded and abide by an international standard. These standards set criteria so that nozzles across different brands and nozzle types/series can be compared equally.

    In simple terms, a yellow-colored or “02” size nozzle in one series will have the same flow capacity as a yellow nozzle from another brand or spray nozzle series. You can find the different sizes/colors and their part numbers in the far-left column of a sprayer nozzle chart:

     

     

    For additional details on how to understand spray nozzle sizing, refer to our guide to understanding sprayer nozzle numbers.

     

    Operating Pressure

    The operating pressure directly influences the flow rate of the nozzle, which is the amount of liquid that passes through the nozzle per unit of time, typically measured in gallons per minute (GPM). A range of operating pressures is displayed to show the capacity (flow rate) of each nozzle size at various PSI.

    As pressure increases, the flow rate generally increases as well. A spray chart allows you to see how much liquid the nozzle will dispense at each specified pressure level. This is vital because two different nozzle sizes may deliver the overall GPM you need, but they will do so at different pressures. You must match the flow rate and operating pressure you prefer in order to maximize tip performance.

     

    Droplets Size

    Another significant factor influenced by operating pressure is droplet size. Just as flow rate changes with pressure so too can the droplet size also change. However, while the flow capacities remain the same across nozzle sizes, the droplet sizes produced by the different sizes  at various pressures will vary between different types/families of sprayer nozzles.   Spray nozzle charts provide the average droplet size a nozzle produces at different operating pressures. 

    Again, droplet size is one of the most vital aspects of a sprayer nozzle to get right because it impacts factors like spray coverage and drift which determine your application’s effectiveness. For more details on how to understand this aspect of sprayer nozzles, be sure to read our full guide to spray nozzle droplet size

     

    Using a Spray Nozzle Chart to Identify the Right Nozzle

    While understanding the information that is presented in a sprayer nozzle chart is vital, it is only half the equation. You also must understand how to use it to narrow in on the best nozzle for your needs. Here’s a simple step-by-step guide to help you navigate the chart and select the perfect nozzle for your specific application.

    Determine Your Application Requirements

    The first step involves gathering the details of your application. Here is the information you need:

    • Application Rate: How many gallons per acre (GPA) you need to apply.
    • Ground Speed: The speed at which you’ll be operating the sprayer (MPH).
    • Spray Pattern Spacing: The spacing between your nozzles on the boom (most commonly 20” or 30”).
    • Desired Droplet Size: Based on the type of chemical and drift potential as recommended by your chemical labels.

    With this info, you can calculate the gallon per minute (GPM) flow rate you need out of a nozzle to achieve your desired application rate (GPA). Here is the formula to determine this:

    You can see a full walkthrough of how to use this formula as well as a calculator that will do the work for you in our guide to calculating nozzle/orifice size.

     

    Find Your GPM In the Chart

    Once you have determined the flow rate you need out of each nozzle, you can search for that flow rate in the capacity column. The nozzles are listed from smallest to largest capacity, starting at the top. You’ll simply follow the column down until you arrive at your flow rate.

    Note, you may discover several different sizes of spray tip will work for your desired flow rate, but that doesn’t necessarily mean each nozzle is equally right for your application. There are other factors to consider as discussed above that you’ll want to check, too.

     

    Identify the Corresponding Nozzle

    Next, follow the row horizontally to the left to find out the PSI that will produce your flow rate with that nozzle. If that PSI is too low or high for your application, then look at the next nozzle size and find out what operating pressure will produce the GPM you need. Continue this step until you find a nozzle that matches both your desired flow rate and operating pressure.

     

    Verify Droplet Size

    Confirm the droplet size classification meets your requirements (e.g., Medium, Coarse) as recommended by the product label. Droplet size typically decreases as pressure increases, so this means that two different sized nozzles can potentially produce the same flow rate but create different droplet sizes. 

    Droplet size is a complex topic that can have a significant impact on the effectiveness of your pesticide/herbicide application. If you would like a full breakdown, please read our guide on  

     

    Example

    Let’s suppose you need to apply 15 GPA at a ground speed of 6 MPH with nozzles spaced 20 inches apart. If we enter these numbers into the GPM formula we get 0.30 GPM. This is the number we need to find in the nozzle chart. 

    In our example, we are using the chart for TeeJet Turbo TwinJet (TTJ60) nozzles, but this process is the same for most flat fan sprayer nozzles regardless of the brand: 

    You can see that our flow rate (0.30 GPM) can be produced by four different nozzle sizes albeit at different pressures. This is common. What you want to do is look at the pressure column just to the left to see what operating pressure would produce this flow rate. Typically, you would want to choose the nozzle that will deliver 0.30 GPM near the middle of the pressure range.

    Choosing a nozzle size that delivers your flow rate in the center of the pressure range provides you room to speed up or slow down as you spray. You would just need to increase or decrease your pressure accordingly. In this example, you would likely settle on the 025 size (violet) or 03 size (blue) nozzle. 

    Depending on your application, you may opt for a nozzle size that can deliver 0.30 GPM while maintaining a certain droplet size. The blue nozzle will result in a spray pattern that will have most of the droplets fall into the Coarse size range. The violet-size nozzle also produces a coarse droplet, however, if you were to speed up and increase your pressure it is possible that most droplets would fall into the Fine category. Depending on the chemicals that you are spraying, this change in droplet size may not fall within the recommended and approved droplet range, increasing drift potential ineffectiveness or risk for your spray area (and those areas around it ).

    The various families/types of nozzles will produce a range of different droplet sizes. This specific type of nozzle produces a relatively small droplet across the different sizes compared to other nozzle types, such as air induction nozzles. It is important to consider your application and consult the label of any product you are using to find help deciding the appropriate droplet size. 

     

    Specific Scenarios

    Many nozzle charts, such as the one referenced earlier, will display the specific flow rate of a spray nozzle across a range of speeds when used at certain spray nozzle widths. In the chart above, you can see the flow rates for each nozzle size when spaced at both 20 and 30 inches apart on a sprayer boom.

    This can help you identify the nozzle sizes that will work for your application rate without having to calculate your GPM. Of course, this is only applicable if your nozzles are at that specific spacing and you travel within the provided speed range.  

     

    Conclusion

    Understanding spray nozzle charts is key to making informed decisions and optimizing your spraying operations. By following the steps described today, you can use spray charts to identify the most suitable nozzle for your specific application requirements.

    You can find charts for specific spray nozzles on our product pages for each nozzle type:

    If you’re still uncertain about which nozzle is right for your needs or want to explore more about spray nozzles, contact our agriculture sales team for assistance.

    Comprehensive Guide to Deicing Equipment: Storage Systems, Pumps, and Sprayers

    There are several liquids used to effectively manage snow and ice on parking lots, streets, and highways. But effective deicing and anti-icing requires not only the right liquids, but also the proper equipment to store, transfer, and apply these solutions efficiently.  

    In this guide we will cover the essential storage systems, pumps, plumbing, and sprayers needed for applying salt-brine, (sodium chloride and water), mag chloride, calcium chloride, and other de-icing liquids. 

     

    Common Deicing Liquids

    Before we discuss the equipment, let's clarify the types of liquids we'll be storing and applying: 

    • Salt Brine, Sodium Chloride (NaCl): Approx. 1.2 specific gravity (23.5-26.4 % solution).
    • Mag Chloride (MgCl): Approx. 1.34 specific gravity.
    • Calcium Chloride (CaCl): Approx. 1.33 (specific gravity). 

    Compatible materials:

    • Polypropylene
    • HDPE
    • PVC
    • Stainless
    • EPDM
    • Viton

    De-Ice Storage

    No matter what liquid deicer you are using, proper storage is essential to prevent waste and provide you with a convenient way to access and mix your batches. The type and size of your tank(s) is not the only factor to consider but also the lid, tank fittings, and plumbing.  

    De-ice Storage Tanks

    Poly tanks are the most popular storage solution for deicing liquids. Fiberglass and stainless steel can be used as well. All these tanks have an excellent lifespan and compatibility with the common de-icing fluids, although stainless and fiberglass are less common due to their cost. Carbon steel tanks are not recommended. 

    When storing de-ice or anti-ice fluid, we recommend polyethylene tanks strong enough to hold liquids that weigh up to 14 lbs. per gallon. This will cover the weight of any de-ice liquids. Common polyethylene tanks are a partially transparent “white” color with inhibitors to protect the tank from UV rays. Other color tanks can be used but the standard white tanks allow liquid level in the tank to be seen. 

    What size tank do I need for de-ice? 

    Poly tanks come in a wide variety of sizes and shapes. The size of your tank depends a lot on your operation. However, there are some key things to consider:  

    • If you purchase your liquids, is there a certain volume it is delivered in? Is there a quantity discount?
    • How much brine would you need to cover all of your territory in one application?
    • Do you make your own brine? If so, how fast can you make brine compared to how fast your trucks can apply it? 
    • How long can your liquid be stored?  

    Fittings and Recirculation

    Brine stratifies overtime so circulating your tanks is important. Typically, a tank will come standard with one fitting installed for load/unload. It is best to request or install multiple fittings so you can plumb a tank for recirculation. 

    • It's best to use tanks with two 2-inch or 3-inch fittings to facilitate adequate suction & recirculation.
    • Polypropylene (polypropene) fittings are acceptable, but they can be easier to break, especially in cold temps. Stainless steel is recommended for its durability, despite the higher cost.  

    Tank Mixing Educators (TMEs)

    Proper recirculation and mixing are enhanced with a tank mixing eductor. An eductor increases the agitation rate of liquid in the tank. It is both quicker and more effective than simply pumping the liquid out of one tank port and into another.  

    Shop De-Ice Storage Tanks & Equipment 

     

    De-Ice Transfer Pumps

    The next component needed for handling de-icing liquids is a transfer pump. As with the storage tanks, the best option is a pump constructed of polypropylene or stainless steel. Poly pumps are less costly, but stainless is more durable. 

     

    In most cases a 2-inch transfer pump is adequate, depending on the specific pump and your plumbing, you can expect 80 or more gallons per minute from a 2-inch pump. A three-inch pump can be used if higher rates are desired, 250 GPM or more.  

    A transfer pump for brine or other de-ice liquid should be rated to handle liquids up to a 1.4 S.G. This means that the horsepower is relatively higher than the same pump that is intended to handle water only.  

    Plumbing for De-Ice Transfer Pumps

    Plumbing is an aspect that you should not overlook. At the risk of sounding repetitive, the hose, pipe, valves, and fittings need to be made from materials compatible with the liquid you are using and sized properly. The size of those plumbing components is vital. Your pump may be capable of 200 GPM but your plumbing will have a huge impact on whether or not you actually can achieve that flow rate.  

    The primary thing to ensure is that the suction pipe (the hose or pipe from the tank to the pump inlet) has an inner diameter of at least the same size as the pump inlet. For example, a two-inch pump requires a two-inch inside diameter hose or pipe. If a hose is used, then it must be a suction hose that won’t collapse from the suction generated by the pump.  

    Why is this essential? A centrifugal pump needs the right size fluid path on the suction side to avoid cavitation. Cavitation happens when the pump is starved of adequate liquid, which can damage the pump. You can learn more about centrifugal pump operation in our guide written by our in-house engineer Tom Hansen.  

    Moving on to the discharge side of the pump, we still have some important guidelines to maximize your flow potential: 

    • Use a hose or pipe that won’t restrict flow, again 2-inch hose, fittings, valves for 2-inch pumps and 3-inch for 3-inch pumps. 
    • Note that not all “2-inch” valves have a 2-inch fluid path. Some 2-inch valves actually have only a 1-½ inch fluid path. Use full 2-inch port valves and fittings to reach the full potential of the pump.
    • Limit the number of restrictions in your plumbing. Elbows, valves, vertical pipes, strainers, etc. will potentially decrease your flow rate.
    • Install a strainer after the pump to decrease the chances of cavitation. 

    De-Ice/Anti-Ice Sprayers 

    When it comes to the actual machines that apply the liquid to the surface, there are several options. These different types of applicators work on the same basic principles with the primary difference between them being their size and the sophistication of the controls. 

    Skid Mount Sprayers 

    • Sizes: 50, 100, 200, 300, and 500 gallons
    • These sprayers are designed for easy installation and removal, making them suitable for parking lots, side streets, driveways
    • Made to fit in pickup beds, smaller 50 and 100-gallon skids can fit in UTVs/side-by-sides. 
    • Basic pressure-based controls are used to manually control the sprayer's output. Automatic rate controllers and GPS can be incorporated if desired. 

    Deice Skid Options:

    Larger Sprayers for Dump Trucks 

    For larger-scale deicing operations, dump truck-mounted sprayers are essential. These sprayers offer greater capacity and coverage, making them ideal for highways and extensive road networks. Specific models and configurations can be tailored to meet the needs of different municipalities and road maintenance departments. 

     

    The primary feature of Dultmeier Sales’ larger de-ice sprayers is the ability to “self-load”. These 1065 and 1800-gallon sprayers feature heavy-duty steel leg frames. The front legs swivel as the truck backs up and the skid slides into the truck.   

    Self-Loading Sprayer Options: 

    De-ice Rate Control 

    Rate control refers to the method used to adjust the output of the sprayer. There are two primary rate control options: pressure-based, and flow meter-based. These systems help regulate the amount of deicer being applied, ensuring efficient use of the solution.

    In a pressure-based control system, the output of the sprayer is controlled by changing the operating pressure of the sprayer. This can be done manually by adjusting a regulating valve or with an electronic regulating valve. 

    In a flowmeter-based system, you control the output of the sprayer with an electronic regulating valve. Typically, this is done automatically via a rate control console. Automatic rate control allows you to input your parameters and desired output per lane mile. The system will automatically adjust to maintain your application rate if it is within the flow capacity of your nozzles.

    View Rate Control Options for De-Ice/Anti-Ice Sprayers 

    De-Ice/Anti-Ice Spray Nozzles

    The nozzles used on a de-ice/anti-ice sprayer should be poly or stainless steel. Stainless steel is the most durable option. Nozzles are available in different spray patterns to accommodate various scenarios. The most common nozzles are solid stream nozzles, flat fan nozzles, and flood nozzles.  

    Flat fan nozzles and flood nozzles are ideal when you want to completely cover a surface to prevent ice and snow buildup. Solid stream nozzles are used in de-icing applications. They do not cover the entire surface, rather they deliver a directed spray to penetrate ice/snow on the road. The idea is to get the liquid under the snow and ice to the road surface to melt from the bottom and allow sunlight to work on the top layer.  

    Solid stream nozzles can also be effective for anti-ice or prewetting applications. When using these nozzles, there are gaps on the surface between treated areas. This method is a safety precaution in extremely cold temperatures to prevent the entire road surface from becoming a sheet of ice should the liquid solution freeze. The untreated strips provide dry, ice-free areas for drivers. 

    Nozzle Sizing 

    The rate control system is used to adjust your output, however the nozzles on the sprayer ultimately dictate the flow rate. Nozzles come in a wide range of sizes, and you must calculate the correct size based on the gallons of liquid you want to apply per lane mile, 1000 square feet, acre, etc.  

    If you need help sizing your nozzles you can reach out to us with your application rate (gallons per lane mile, per 1000 sq ft, etc.) and we can help you.  

    Brine Production System

    An efficient brine production system is the backbone of any deicing operation. These systems are designed to produce large quantities of salt brine quickly in a cost-effective manner. Key components of a brine production system include:

    • High rate of production
    • Mechanism to ensure the correct concentration of the brine solution
    • Ability to clean out sand/debris easily so you can get up and running again 
    • Durable and reliable
    • Easy-to-operate controls 

    Dultmeier Sales manufactures a completely stainless steel brine production system that is extremely easy to operate and clean out. If you would like more information, please let us know, we would be glad to help! 

     

     

    Tech Ag & Industrial Sales 

    Shane Blomendahl is a tech sales veteran at Dultmeier Sales with over 10+ years of experience in liquid handling products covering several industries and applications.

    Learn More About Author

    Chemical Inductors Guide: Keys to Efficient Operation

    Using a chemical inductor is an effective way to add chemicals into a mix load for a sprayer. At Dultmeier Sales, we assemble a variety of cone bottom inductor tanks with Venturi assemblies that ensure precise and efficient chemical mixing.  

    In this article, we'll provide a complete guide on how chemical inductor systems work, covering everything from the principles behind the Venturi effect to the detailed operation of these systems. Whether you're new to using chemical inductors or looking to optimize your current setup, this guide will equip you with the knowledge you need.

     

    How a Chemical Inductor Works

    The Venturi effect is the driving principle behind how a chemical inductor works. The Venturi effect occurs when a fluid flows through a narrow constriction, causing its velocity to increase and its pressure to decrease, creating a low-pressure zone that can generate suction. This happens in a chemical inductor when carrier from the transfer pump flows into the inductor assembly on the bottom of the cone bottom tank. 

    The suction effect draws the chemical from the inductor tank into the flowing water. As the chemical mixes with the water in the Venturi nozzle, the combined solution is then transferred into the main sprayer tank or nurse tank.  

    This process not only requires a specific set of components but also the correct plumbing to work effectively. Let’s examine each component and how they work together. 

     

    Chemical Inductor Components

    Whether a chemical inductor system is on-board a sprayer, mounted on a tender trailer, or stationed the ground, the core components are the same:  

    • Venturi/bypass assembly
    • Cone bottom tank
    • Hose/plumbing
    • Centrifugal transfer pump

     

     

    There are variations of each component depending on the specifics of the application. 

     

    Venturi/bypass Assembly

    The venturi bypass assembly is the critical piece of any chemical inductor system and essential to drawing in agrochemicals, AMS, crop oil, etc. into your final mix load. This assembly includes the venturi, bypass valve, and all appropriate plumbing fittings. When the bypass valve is closed water is forced through the venturi. Then the tank valve can be opened, and the contents of the inductor tank are drained by the suction from the venturi.  

    When the bypass valve is open, water avoids the venturi and the flow rate is faster, but there is no suction to pull any intended mix liquids or chemicals from the tank.  

    If you are building an chemical inductor, you can add a venturi assembly to an existing cone bottom tank.  

    Inductor Tank 

    A cone-bottom polyethylene tank is recommended for use with agrochemicals (pesticides, herbicides, fertilizers, etc.) because it offers a wide range of chemical compatibilities. They are available in various sizes, commonly 15 to 110 gallons. The size of your inductor tank does NOT affect the rate at which chemicals are drawn into your mainline. A larger tank simply holds more product. The tank opening on the bottom of the tank, however, is important to consider. A smaller tank opening can restrict the induction rate and make your overall operation less efficient.  

    The size of the tank lid also matters. For starters, a larger lid opening makes it easier to add chemicals and reduces the risk of spillage outside the inductor system. A larger 16-inch lid also allows you to use a Chem-blade jug emptying and rinsing system. With this accessory you can quickly empty chemical jugs without opening them or pouring them. 

    On this page you can see all our available cone bottom inductor tanks. 

    Plumbing/Hose 

    Like the tank, it is recommended that the valves and fittings are also poly. Polypropylene not only works best with agrochemicals but is also suitable for other products such as salt-brine, fertilizers, acids, and cleaning solutions. 

    EPDM rubber suction and discharge hoses, such as these offerings from Kanaflex (link) and TigerFlex (link) work great for the suction and discharge sides of your inductor system pump. Two- and three-inch hoses are common plumbing sizes used with inductors. 

    Transfer Pump 

    Although the pump is not an integrated part of the inductor assembly, it is a critical component required to make the system function. The inductor system must be used with a centrifugal transfer pump that is capable of pushing enough flow through the venturi to generate adequate suction. A general rule of thumb is to use a pump that matches the same size as your inductor’s plumbing. So, use a two-inch pump with a two-inch inductor system, and a three-inch pump with a three-inch inductor system. 

    Additionally, you’ll need to ensure the pump has adequate horsepower to move the liquid through the inductor venturi. If the pump lacks enough horsepower, the pressure may be too low, which can limit the amount of suction created. For example, when pumping water, a two-inch pump with a five-horsepower gas-engine will suffice for a two-inch inductor setup. If you have a three-inch inductor assembly, then you typically need a three-inch pump with 8+ horsepower.  

    If your carrier is fertilizer or some other liquid heavier than water, you will likely need more horsepower to drive the pump. You can learn more about the pump sizes in our fertilizer transfer pump guide.  

    Pump Options for Chemical Inductors: 

     

    How to Install a Chemical Inductor System 

    Like the pump, the plumbing setup of an inductor tank is crucial. The most important aspect is the placement of the pump in relation to the inductor system. The inductor should be positioned on the discharge side of the pump. This placement is essential because it is the flow of the water pumped through the venturi that creates the vacuum effect. 

    Using the right hose and fittings is vital to proper plumbing for inductor tanks. It is important to match the inside diameter of the hose and fittings with that of the pump ports. For example, a two-inch inductor system should have two-inch plumbing throughout. Hose, fittings, pumps, valves, venturi, etc., likewise should be two-inch inside diameter.  

    Any restriction in flow can disrupt the system’s effectiveness. Eliminating as many bends or slowdowns within your plumbing will ensure your flow rate remains strong enough to draw product down through the venturi.  Try to limit the length of hose on the suction and discharge sides of the pump and avoid using too many 90-degree elbows and strainers.   

    Furthermore, where you place your pump in relation to your system’s water supply tank and inductor can affect the performance of the overall system. You will want to keep the pump as close to the water tank as possible, because the shorter the distance the water must travel to the pump, the less pressure loss you'll have and the better your pump will perform. Proper pump placement means a more reliable and effective chemical mixing process. 

    Since plumbing plays such a large part in the overall performance of your inductor system, it’s important to consider how every part of the system works in tandem with one another. As referenced above, the hoses throughout your system need to be the proper size to the inductor unit.  

    This is also true for the inlet of the pump as well. A two-inch pump needs to be fed with at least a two-inch hose, a three-inch pump with three-inch hose, and so on. You do not want to starve the pump or run it dry. This will result in seal failure in addition to the inductor not functioning properly.  

     

    Chemical Inductor Plumbing Diagram 

     

    Keys to Remember When Plumbing Your Inductor Tank: 

    • Venturi Assembly: Must be on the discharge side of the pump.
    • Hose and Fittings: Match the inside diameter of your pump inlet and inductor.
    • Flow Optimization: Avoid 90-degree elbows and pumping great distances 100 ft +
    • Pump Placement: Keep the pump close to the supply tank for efficient operation.
    • Pump Operation: Never run the pump dry and ensure supply tank valves are fully open. 

    Using an Inductor Tank Without a Venturi Assembly 

    While most chemical inductors utilize a venturi assembly, you can use a cone-bottom tank without a venturi assembly by placing it on the suction side of the pump. However, this setup requires careful consideration to avoid starving the pump of liquid, which can cause pump cavitation and damage. 

    One of the risks by positioning the inductor tank upstream of the pump is the possibility of air bubbles entering the system. When you open the tank valve, liquid in the tank is drawn into your carrier line, but you are also introducing air into the line. Air bubbles passing through the pump can lead to damage over time. A large amount of air can starve the pump and lead to seal failure rather quickly. 

    Placing the inductor on the suction side of the pump also means you have chemicals passing through your pump rather than just water. Although many pumps are compatible with agrochemicals, this will inevitably lead to more wear and tear compared to water alone.  

    You also have the risk of contaminating your water supply or water tank, though using a check valve between the water tank/supply and the cone bottom tank to prevent chemical back flow can likely eliminate this contamination risk.  

    Conclusion 

    When set up properly, inductor tank systems are a highly effective way to introduce multiple chemicals or fertilizers into your spraying application. Following these guidelines will help you build or improve your current set-up, ensuring efficient and reliable chemical induction for your sprayer.  

    Dultmeier Sales offers a complete inductor systems in poly and stainless steel as well as all the components needed to operate them: 

    Inductor systems

    Pumps

    Hose

    Plumbing 

    Complete Banjo Manifold Flange Guide: Fittings, Clamps, & Gasket Sizing

    Banjo Corporation has a long history of creating innovative products. One of their biggest innovations came when they introduced manifold flange plumbing fittings into the agricultural spraying and industrial liquid handling industries. These flange fittings are designed to be used in place of threaded fittings. This advancement makes it much simpler and faster to assemble, disassemble, and re-plumb systems without the hassle of dealing with threaded connections.

     

    With manifold clamps, you can quickly remove and inspect sprayer components like flow meters and strainers without disassembling the entire system. This is a stark contrast to threaded systems where you must start at one end and disassemble parts until you reach the desired component. 

    Anyone who has ever replaced a cracked strainer or valve knows how difficult and time consuming it can be to remove several hoses and fittings to replace your broken part, and then reassemble the entire thing. With manifold flanges the component can be removed and replaced by just removing the flange clamps.   

    This guide will cover everything you might need to know when it comes to using manifold flanges, from the fittings themselves to how to correctly size a gasket for Banjo manifold flanges. 

     

    Understanding Manifold Flanges

    A Banjo manifold flange is a type of connection used in sprayer systems to join various components such as pumps, valves, and hoses. These flanges are available in different sizes, and two flanges of the same size are connected with a manifold flange clamp. A gasket fits in between the two flanges to create a secure, leak-proof seal.  

    Banjo manifold flanges have been so widely adopted in the market that besides other different manifold fittings, these flanges have been integrated into the designs of pump housings, valves, strainers, flow meters, and more.  

    For example, Banjo, Hypro, and John Blue offer many pumps with manifold flange connections in place of pipe thread. There are also line strainers that have flanged ports in place of threaded ports. To help with the installation of manifold flanges, there are also U-bolts specifically designed for the various manifold fitting sizes. 

    Other manufacturers have made compatible flanges that will work with the Banjo manifold fittings, but the key is making sure that you match up the correct corresponding sizes. 

      

    Sizing Manifold Flanges 

    Banjo manifold flange fittings come in four standard sizes: 1-inch, 1.5-inch (also referred to as a 2-inch standard port), 2-inch full port, and 3-inch. Understanding their inside diameter is crucial for determining flow capacity and ensuring effective use of these fittings. Despite the varying naming conventions across different manufacturers like Banjo, Hypro, and TeeJet, compatibility is straightforward if the correct sizes are identified. 

    A common source of confusion is that Banjo labels their 1.5-inch inside diameter flange as a 2-inch “standard port” flange, while their 2-inch inside diameter flange is called a 2-inch “full port” flange. Banjo uses M200 and M220 as the part numbers for their 2-inch standard port and 2-inch full port flanges. Hypro refers to their 1.5-inch diameter flange fittings as 150 series flanges. This means a Hypro 150 series clamp will fit a Banjo M200 series flange. The same is true for the gaskets. 

    These part numbering systems are confusing. This charts below shows the different flange sizes and what part number from each manufacturer will work with each size. 

     

    Compatible Part Numbers for Each Manifold Flange Size 

    Manifold Flange Size 

    Inside Diameter Measurement 

    Banjo Part Number 

    Hypro Part Number 

    TeeJet Part Number 

    1-inch

    1-inch

    M100

    100

    50

    1.5-inches (2-inch standard port)

    1.5-inches

    M200

    150

    75

    2-inch full port

    2-inches

    M220

    200

    na

    3-inch

    3-inches

    M300

    300

    na

     

    Compatible Manifold Flange Gasket Part Numbers  

    Manifold Flange Size 

    Banjo 

    Banjo Viton 

    Banjo Skirted Gaskets 

    Hypro EPDM 

    Hypro Viton 

    1-inch

    TKM100G 

    TKM100GV

    TKM102G

    HYUFG0100E 

    HYUFG0100V

    1.5-inches (2-inch standard port)

    TKM201G 

    TKM150GV 

    TKM202G

    HYUFG0150E 

    HYUFG0150V

    2-inch full port

    TKM221G 

    TKM200GV

    TKM222G

    HYUFG0200E

    HYUFG0200V 

    3-inch

    TKM301G 

    TKM300GV

    TKM302G

    HYUFG0300E

    HYUFG0300V

     

    Skirted Gaskets 

    Both Hypro and Banjo offer “skirted” gaskets. These gaskets are designed to stay in place when installed in a manifold. This allows you to install flange clamps without worrying if the gasket is seated correctly.  

    Shop Manifold Flange Gaskets 

     

    Compatible Clamps for Each Manifold Flange Size 

    Clamp Part Numbers 

    Standard Clamp 

    T-Bolt Clamps 

    Bolted Heavy Duty Clamps 

    Hypro Clamp 

    1-inch

    FC100

    na

    na

    HYC100

    1.5-inches (2-inch standard port)

    FC200

    na

    na

    HYC150

    2-inch full port

    FC220

    TKFC220TB

    TKFC220B

    HYC200

    3-inch

    FC300

    TKTC300TB

    TKFC300B

    HYC300

     

    Banjo offers three different types of clamps for their manifold flanges. The first type is a standard worm gear clamp. This is the most economical and works well when there isn’t too much weight or movement from the adjacent components.  

    T-bolt flange clamps are another clamp option, and these clamps are ideal for use with larger, heavier hoses or pipes. Finally, the heavy-duty bolted clamp is best suited for applications where significant weight may be applied to the clamp. 

    For example, if you have a 3-inch hose connected to a manifold flange outlet on a pump and you will move the hose around, it can put strain on the flange clamp. The heavy duty bolted clamp is the best option in this case as it is designed to withstand this frequent stress, ensuring the integrity of your connections.  

    Hypro manifold flange clamps are made of poly, and they are also T-bolt style clamps. The big advantage of the Hypro clamp, however, is the hinged design. This makes it even easier to get the clamp around the flange after your fittings are in place.  

    You can view all the different flange clamps and gaskets on this page. 

     

    Different Types of Flange Fittings

    The manifold flange fittings are primarily available in polypropylene, but some stainless-steel fittings are also available. There is a poly manifold fitting to replace just about any standard pipe thread plumbing fitting you can think of, though some of the most common are: 

    • Elbows
    • Couplings
    • lugs/Caps
    • Hose Barbs
    • Reducers
    • Crosses
    • Tees 

    You can see the full selection of poly manifold fittings here.  

     

    Final Word 

    Flange fittings have been incorporated into about every type of sprayer component used today, from pumps and valves to flow meters and strainers.   

    Banjo Corporation's manifold flange fittings simplify assembly, disassembly, and re-plumbing in ag spraying and industrial systems. These fittings are compatible with many other manufacturers components, and so long as you are comfortable identifying the correct corresponding size needed, you’re unlikely to encounter many issues using these flange fittings. If you have any questions about manifold flange fittings, please contact us.  

     

    Tech Ag & Industrial Sales 

    Shane Blomendahl is a tech sales veteran at Dultmeier Sales with over 10+ years of experience in liquid handling products covering several industries and applications.

    Learn More About Author

    Comprehensive Guide to Cam-Lock Couplers: Selecting the Right Fitting for Your Needs

    Cam lever couplings, or cam and groove couplings, are essential plumbing fittings used widely in agricultural and industrial liquid handling. These couplings provide an efficient means of quickly connecting and disconnecting hoses from tanks, tanker trailers, sprayers, pumps, and more.

    While manufacturers typically refer to these fittings as cam-lever or cam and groove couplings, they are also known by other names such as cam locks (couplers), cam levers, quick couplers, and lever locks.

    Despite the varied terminology, these terms generally refer to the same type of fitting – though not every camlock coupler works for every application. In this article, we’ll detail the key features and differences of various cam and groove couplings to help you decide which style of fitting works best for your unique needs. 

     

    Types of Cam-Lock Couplers

    Nomenclature is important when discussing  cam-lock couplers (or any coupling device for that matter). Understanding the different jargon used to refer to specific fittings ensures that you identify the correct item you need.

    There are six main types of cam-lever couplings, each made from different combinations of male adapters (male ends) and female couplers (female ends) with either male pipe thread (MPT), female pipe thread (FPT), or hose shank connections. The types are labeled A, B, C, D, E, and F depending on the end connection type they feature and generally range in sizes from ¾ to 6 inches. There are also dust caps (DC) and dust plugs (DP) available for each size.

    Part A 

    Male adapter with female pipe thread, typically National pipe thread (NPT).

     

    Part B

    Female coupler with male pipe thread (MPT).

     

    Part C

    Female coupler with a hose shank.

     

    Part D

    Female coupler with female pipe thread.

     

    Part E

    Male adapter with a hose shank.

     

    Part F

    Male adapter with male pipe thread.

     

    Dust Plug (DP)

    Fits into the female coupler to prevent dust and debris entry.

     

    Dust Cap, Female Coupler (DC)

    Fits onto the male adapter to prevent dust and debris entry.

     

    Non-Standard Cam Lever Fittings

    Beyond these standard fittings, there are additional non-standard types available for specific applications. 

    • Jump Sizes, for transitioning between two sizes of cam couplings
    • Elbows
    • Flange Ends
    • Couplers with Gauge Ports
    • Locking couplers
    • Swivels

    Even these specialty camlock fittings aren’t the last of the available options.  You can shop all our cam lever couplings and accessories , and if you are looking for something specific, please let us know

     

    Materials and Compatibility

    Cam and groove couplings are manufactured in a variety of materials including stainless steel, aluminum, polypropylene, nylon, and more.

    The couplers (female) have a rubber gasket inside to seal up the connection. There are different gasket materials available as well to offer compatibility with different types of liquids:

    • EPDM: Agrochemicals, fertilizers, salt brines, DEF, acetone, acetic acid
    • Viton: Acids, bleach, agrochemicals, fertilizers, salt brine, DEF, xylene, biofuels
    • Buna: Fuels, oil, hydraulic fluid

    *These are general guidelines. Always check compatibility before selecting materials.

     

    Common Cam-Lock Coupler Applications

    A cam-lock coupling offers users a way to couple and uncouple hoses from tanks, trailers, pumps, etc., while still providing a secure seal. The couplers are suitable for a variety of applications including but not limited to:

    • Agriculture
    • De-icing
    • DEF (Diesel Exhaust Fluid)
    • Petroleum
    • Mining
    • Manufacturing
    • General Water Transfer
    • Waste Management
    • Brewing & Distilling
    • Industrial Cleaning

     

    Connecting and Disconnecting Cam-Lock Fittings

    Connecting cam-lock fittings is straightforward but a little difficult to describe in words alone. This video provides a live look at the simple process:

    1. Insert the Adapter: The adapter is the “male” end. You insert this end into the coupler side (“female”) with the cams/levers in the open position or levers “up”.
    2. Lock the Levers: Push the levers down to the closed position to lock the connection.
    3. Disconnect: Lift the cam arms/levers to the open position and pull the adapter out.

     

    Are Cam-Lock Couplings Interchangeable? 

    One key advantage of cam-lock couplings is their standardized sizing. Cam-lever couplings are manufactured according to a standard, so regardless of the manufacturer or material, they will connect seamlessly. For instance, a polypropylene male end will fit a stainless-steel female coupler so long as they are both the same size.

     

    Preventing Leaks and Ensuring Security

    Cam-lock couplings are designed to seal completely when the levers are properly closed. If there are leaks, it may be due to improper connection, worn-out gaskets, or damage to the coupling itself.

    Installing cam couplings vertically or at a 45-degree angle can help reduce wear on the gasket. This takes the weight off the fitting, so it is not pinching the gasket on the bottom of the coupler. If needed, though, replacement gaskets and shims are available. 

     

    Camlock Coupler Accessories

    • Safety Bumps: These “bumps” replace standard cam-lock dust plugs and caps. They feature a handle for convenience, and they provide protection to the cam-lock coupler in case it is dropped.
    • Safety Locks: To prevent accidental opening of the levers, you can use safety locks. These accessories help secure the levers and prevent spills or leaks in demanding industrial environments. Another option is to use locking-style lever couplings which feature a locking mechanism built into the camlock arm.
    • Extra Thick Gaskets: These cam-lock coupler gaskets are thicker than the standard gaskets and provide a tighter seal and extend the life of your gaskets.
    • Shims: A shim can be installed under the cam-lock gasket. This helps create a seal when the couplers or gaskets get worn. 

     

    Recommended Cam-lock/Lever-Coupling Brands

    • Banjo Corporation is a leading manufacturer of cam-lock couplers. They specialize in injection molded glass filled polypropylene fittings and manufacture extremely durable cam-lock couplings in the USA.
    • Dixon has an extensive selection of cam-lever couplings. They offer different styles, accessories, sizes, materials, and other features. 
    • Kuriyama is a leading manufacturer of industrial and agricultural hose. They also offer a wide array of quality stainless-steel and aluminum couplers. 
    • Green Leaf cam-lever couplings feature an innovative locking design. The levers are locked in place automatically and you simply push the buttons on each lever to release. 

     

    Before You Go

    Cam-lock fittings follow industry standards, ensuring compatibility across different sizes and materials. They offer a versatile and reliable solution for fluid transfer in various industries. By selecting the right type and material for your application, you can maintain a secure and efficient connection, prolonging the life of your fittings.

    For more information or to purchase cam-lock couplers, contact our sales team.

    275 Gallon IBC Cage Tank FAQs

    Intermediate bulk containers (IBCs) are common chemical containers used in a variety of industries. Also known as “cage tanks”, IBCs are available in several sizes, though one of the most common is the 275-gallon cage tank. The availability and chemical compatibility of these 275-gallon cage tanks makes them an obvious low-cost option for several small-scale chemical-handling applications. 

    275 Gallon IBC/Cage Tank  

    If you are looking at using one an IBC to store or transfer chemicals, you’ll first need details on the tank’s dimensions, lid size, and how to connect to the tank. Understanding these specifications is crucial for ensuring the compatibility and safety of your chemical storage and transfer operations. This guide will walk you through the essential aspects of these common 275-gallon cage tanks.

     

    275 Gallon Cage Tank Dimensions 

    Standard dimensions of a 275-gallon tote: 

    • Height: 46 inches
    • Width: 48 inches
    • Depth: 40 inches 

    These dimensions can vary slightly depending on the manufacturer and the specific design of the tote, but they generally fall within these measurements. 

     

    IBC Cage Tank Features 

    IBC cage tanks have a metal cage that encases a high-density polyethylene (HDPE) plastic tank. The cage is required, as it protects the tank from any equipment that may bump into it and helps maintain the integrity of the tank walls while filled.  

    When empty, you can stack these tanks on top of one another, although it is not advised to stack more than three. Even with a cage, IBC totes are not strong enough to stack when they have liquid inside. The base of the tank, a galvanized pallet integrated in the cage frame, is designed to be moved using standard pallet jacks and forklifts. 

     

    Empty Weight of 275 Gallon IBC/Cage Tank 

    Depending on the manufacturer these 275-gallon cage tanks can weigh between150-170 lbs. pounds when empty.  The weight varies slightly due to small variations in the cage design, type of outlet valve, and number of lids/vents on the top of the tank. 

     

    Rated Weight per Gallon 

    IBC shuttles have a 1.9 S.G. rating. This means they are rated for liquids that weigh up to about 15 pounds per gallon. For reference, water is 8.345 lbs./gal. 

     

    IBC Tank Lids  

    The 275-gallon IBC tanks sold at Dultmeier Sales feature one six-inch lid positioned on the top center of the tank. The lid features a vent in the center. The vent is essential to prevent the collapse of the tank when using a pump to withdraw liquid. There are many different lid variations that can accommodate different types of pipe thread or Micro Matic valves.  

     

    There are several types of lids options. They feature single ports, multiple ports, vents, etc.: 

    There are also a wide range of cage tank accessories to accommodate different applications: 

    You can view more IBC tote accessories here.

     

    Tamper Evident  

    The lid, vent, and the outlet valve also feature  spots for tamper evident seals to be installed. These seals lock the lid in place and ensure that a the liquid contents are not tampered with or compromised during use or transport from place to place. The tank lid cannot be opened without the wire seal being broken.  

     

     

    How to connect to a 275 Gallon Cage Tank

    The outlet at the bottom of the standard IBC cage tank is generally a 2-inch valve. The valve will typically feature a built-in check-valve that allows liquid to flow out of the tank but will not allow anything to be pumped into it. This tank outlet will often feature a 2-inch male cam-lock adapter, and the end of this adapter is threaded for a dust cap. It is advised that this thread not be used to attach any accessories/pumps, use only for the dust cap.  

     

    If you need to connect a hose to a standard IBC cage tank you just need a 2-inch female cam-lock coupler. This could be a part C, part B, or part D coupling. If you are not familiar with the different cam-lock coupler types, you can see a complete explanation in this guide to cam-lock couplers.    

     

    Common Uses for 275 Gallon IBC/Cage Tanks

    The uses for IBC containers are many and varied. Some of the most common liquids and applications include, but are not limited to:  

    • Water Collection
    • Agricultural Chemicals & Fertilizer
    • DEF
    • Waste oil
    • Brine
    • Cleaning products
    • Aquaponics and Hydroponics
    • Industrial Processes
    • Brewing and Winemaking
    • Construction 

     

    Dultmeier Sales keeps 275-Gallon IBC Tanks on hand with all the accessories you might need, including pumps for handling a wide variety of different liquids. Contact our sales team for more information, availability, and freight estimates on 275 Gallon IBC Cage Tanks.